Document Type

Article

Publication Date

4-29-2021

Publication Title

Genes

Volume

12

Issue

5

First page number:

1

Last page number:

15

Abstract

Transcriptomic studies of mental disorders using the human brain tissues have been limited, and gene expression signatures in schizophrenia (SCZ) remain elusive. In this study, we applied three differential co-expression methods to analyze five transcriptomic datasets (three RNA-Seq and two microarray datasets) derived from SCZ and matched normal postmortem brain samples. We aimed to uncover biological pathways where internal correlation structure was rewired or intercoordination was disrupted in SCZ. In total, we identified 60 rewired pathways, many of which were related to neurotransmitter, synapse, immune, and cell adhesion. We found the hub genes, which were on the center of rewired pathways, were highly mutually consistent among the five datasets. The combinatory list of 92 hub genes was generally multi-functional, suggesting their complex and dynamic roles in SCZ pathophysiology. In our constructed pathway crosstalk network, we found “Clostridium neurotoxicity” and “signaling events mediated by focal adhesion kinase” had the highest interactions. We further identified disconnected gene links underlying the disrupted pathway crosstalk. Among them, four gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and GRIA1:MAP2K4) were normally correlated in universal contexts. In summary, we systematically identified rewired pathways, disrupted pathway crosstalk circuits, and critical genes and gene links in schizophrenia transcriptomes.

Keywords

Differential co-expression; Pathway crosstalk; PSMC6; Schizophrenia

Disciplines

Genetics and Genomics

File Format

pdf

File Size

1473 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

COinS