Document Type

Article

Publication Date

10-10-2021

Publication Title

Breast Cancer Research

Volume

23

Issue

1

First page number:

1

Last page number:

11

Abstract

Background: Transcriptome sequencing has been broadly available in clinical studies. However, it remains a challenge to utilize these data effectively for clinical applications due to the high dimension of the data and the highly correlated expression between individual genes. Methods: We proposed a method to transform RNA sequencing data into artificial image objects (AIOs) and applied convolutional neural network (CNN) algorithms to classify these AIOs. With the AIO technique, we considered each gene as a pixel in an image and its expression level as pixel intensity. Using the GSE96058 (n = 2976), GSE81538 (n = 405), and GSE163882 (n = 222) datasets, we created AIOs for the subjects and designed CNN models to classify biomarker Ki67 and Nottingham histologic grade (NHG). Results: With fivefold cross-validation, we accomplished a classification accuracy and AUC of 0.821 ± 0.023 and 0.891 ± 0.021 for Ki67 status. For NHG, the weighted average of categorical accuracy was 0.820 ± 0.012, and the weighted average of AUC was 0.931 ± 0.006. With GSE96058 as training data and GSE81538 as testing data, the accuracy and AUC for Ki67 were 0.826 ± 0.037 and 0.883 ± 0.016, and that for NHG were 0.764 ± 0.052 and 0.882 ± 0.012, respectively. These results were 10% better than the results reported in the original studies. For Ki67, the calls generated from our models had a better power for prediction of survival as compared to the calls from trained pathologists in survival analyses. Conclusions: We demonstrated that RNA sequencing data could be transformed into AIOs and be used to classify Ki67 status and NHG with CNN algorithms. The AIO method could handle high-dimensional data with highly correlated variables, and there was no need for variable selection. With the AIO technique, a data-driven, consistent, and automation-ready model could be developed to classify biomarkers with RNA sequencing data and provide more efficient care for cancer patients.

Keywords

Artificial image object; Artificial intelligence; Breast cancer biomarker classification; Convolutional neural network; Image classification; Machine learning algorithm; RNA sequencing

Disciplines

Bioimaging and Biomedical Optics | Oncology

File Format

pdf

File Size

1421 KB

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS