Award Date

8-1-2013

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Curriculum & Instruction

First Committee Member

Kent J. Crippen

Second Committee Member

Peter G. Schrader

Third Committee Member

MaryKay Orgill

Fourth Committee Member

Alice J. Corkill

Number of Pages

157

Abstract

Scientific inscriptions--graphs, diagrams, and data--and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in inscriptions. Furthermore, when learners engage in argumentation, learning science content becomes secondary to the learning of argumentation skills. This design-based research study is nested within the larger effort to inform the design and development of the 5-Featured Dynamic Inquiry Enterprise design framework (5-DIE) for cyberlearning environments and to advance theory associated with the difficulties learners have with scientific inscriptions and the consequences related to using argumentation to learn science content.

In an attempt to engage participants in the process of learning science content with scientific inscriptions and argumentation, two learning strategies were embedded in a 5-DIE lessons. The two learning strategies evaluated in this study were (1) self-explanation prompts paired with a scientific inscription and (2) faded worked examples for the evaluation and development of scientific knowledge claims. The participants consisted of ninth and tenth grade students (age: 13-16 years; N=245) enrolled in one of three state-mandated biology courses taught by four different teachers.

A three factor mixed model analysis of variance (ANOVA) with two between factors (self-explanation prompts and faded worked examples) and one within factor (pre, post, delayed post-test) was used to evaluate the effects of the learning strategies on the acquisition and retention of domain-specific content knowledge. Both between factors had two levels (with & without) and are described by the following experimental conditions: (1) control condition (general prompts), (2) self-explanation condition, (3) faded worked examples condition, and (4) combined condition with both self-explanation and faded worked examples. Acquisition and retention of content knowledge was assessed with a 17-item multiple-choice, researcher-developed content knowledge test.

Results indicated that self-explanation prompts and faded worked examples learning strategies did not influence acquisition and retention of science content in a positive (i.e., learning) way. Based on the finding of this study, it may be concluded that the use of general prompts is as effective as self-explanation prompts and faded worked examples for scaffolding learner engagement with scientific inscriptions and argumentation. Furthermore, the finding indicated additional research is warranted evaluating the generalizability of scaffolds from college to pre-college populations.

Keywords

Computer-assisted instruction; Cyberlearning; Design-based research; Design framework; Instructional systems – Design; K-12; Online learning; Science education; Schools

Disciplines

Curriculum and Instruction | Education | Instructional Media Design | Science and Mathematics Education

File Format

pdf

Degree Grantor

University of Nevada, Las Vegas

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/


Share

COinS