Document Type

Article

Publication Date

9-11-2018

Publication Title

Physical Review Letters

Volume

121

Issue

11

First page number:

1

Last page number:

5

Abstract

Measuring inelastic rates with partial-wave resolution requires temperatures close to a Kelvin or below, even for the lightest molecule. In a recent experiment, Perreault, Mukherjee, and Zare [Nat. Chem. 10, 561 (2018).] studied collisional relaxation of excited HD molecules in the v=1, j=2 state by para- and ortho-H2 at a temperature of about 1 K, extracting the angular distribution of scattered HD in the v=1, j=0 state. By state preparation of the HD molecules, control of the angular distribution of scattered HD was demonstrated. Here, we report a first-principles simulation of that experiment which enables us to attribute the main features of the observed angular distribution to a single L=2 partial-wave shape resonance. Our results demonstrate important stereodynamical insights that can be gained when numerically exact quantum scattering calculations are combined with experimental results in the few-partial-wave regime.

Disciplines

Chemistry | Physics

File Format

pdf

File Size

580 Kb

Language

English

UNLV article access

Search your library

Share

COinS