Semitransparent Sb2S3 Thin Film Solar Cells by Ultrasonic Spray Pyrolysis for Use In Solar Windows

Document Type

Article

Publication Date

12-6-2019

Publication Title

Beilstein Journal of Nanotechnology

Volume

10

First page number:

2396

Last page number:

2409

Abstract

The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical absorption coefficient, such as Sb2S3 (>105 cm−1 at 450 nm), offer semitransparency, appreciable efficiency, and long-term durability at low cost. Oxide-free throughout the Sb2S3 layer thickness, as confirmed by combined studies of energy dispersive X-ray spectroscopy and synchrotron soft X-ray emission spectroscopy, semitransparent Sb2S3 thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO2/Sb2S3/P3HT/Au solar cell, a power conversion efficiency (PCE) of 5.5% at air mass 1.5 global (AM1.5G) is achieved, which is a record among spray-deposited Sb2S3 solar cells. An average visible transparency (AVT) of 26% of the back-contact-less ITO/TiO2/Sb2S3 solar cell stack in the wavelength range of 380–740 nm is attained by tuning the Sb2S3 absorber thickness to 100 nm. In scale-up from mm2 to cm2 areas, the Sb2S3 hybrid solar cells show a decrease in efficiency of only 3.2% for an 88 mm2 Sb2S3 solar cell, which retains 70% relative efficiency after one year of non-encapsulated storage. A cell with a PCE of 3.9% at 1 sun shows a PCE of 7.4% at 0.1 sun, attesting to the applicability of these solar cells for light harvesting under cloud cover.

Keywords

Antimony Sulfide; Semitransparent Solar Cells; Solar Windows; Thin Films; Ultrasonic Spray Pyrolysis

Disciplines

Chemistry | Physical Sciences and Mathematics

Language

English

UNLV article access

Search your library

Share

COinS