Document Type

Article

Publication Date

10-16-2020

Publication Title

Applied Sciences

Publisher

MDPI

Volume

10

Issue

20

First page number:

1

Last page number:

20

Abstract

An Actinide Lanthanide Separation Process (ALSEP) for the separation of trivalent actinides (An(III)) from simulated raffinate solution was successfully demonstrated using a 32-stage 1 cm annular centrifugal contactor setup. The ALSEP solvent was composed of a mixture of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and N,N,N′,N′-tetra-(2-ethylhexyl)-diglycolamide (T2EHDGA) in n-dodecane. Flowsheet calculations and evaluation of the results were done using the Argonne’s Model for Universal Solvent Extraction (AMUSE) code using single-stage distribution data. The co-extraction of Zr(IV) and Pd(II) was prevented using CDTA (trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid) as a masking agent in the feed. For the scrubbing of co-extracted Mo; citrate-buffered acetohydroxamic acid was used. The separation of An(III) from the trivalent lanthanides (Ln(III)) was achieved using citrate-buffered diethylene-triamine-N,N,N′,N″,N″-pentaacetic acid (DTPA), and Ln(III) were efficiently back extracted using N,N,N′,N′-tetraethyl-diglycolamide (TEDGA). A clean An(III) product was obtained with a recovery of 95% americium and curium. The Ln(III) were efficiently stripped; but the Ln(III) product contained 5% of the co-stripped An(III). The carryover of Am and Cm into the Ln(III) product is attributed to too few actinide stripping stages, which was constrained by the number of centrifugal contactors available. Improved separation would be achieved by increasing the number of An strip stages. The heavier lanthanides (Pr, Nd, Sm, Eu, and Gd) and yttrium were mainly routed to the Ln product, whereas the lighter lanthanides (La and Ce) were mostly routed to the raffinate.

Keywords

Actinide separation; ALSEP; HEH[EHP]; PC88A; T2EHDGA; TEDGA; AMUSE

Disciplines

Chemistry

File Format

pdf

File Size

845 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Included in

Chemistry Commons

Share

COinS