Document Type

Article

Publication Date

8-27-2020

Publication Title

Physical Review Research

Volume

2

Issue

3

First page number:

1

Last page number:

6

Abstract

Quantum scattering calculations for all but low-dimensional systems at low energies must rely on approximations. All approximations introduce errors. The impact of these errors is often difficult to assess because they depend on the Hamiltonian parameters and the particular observable under study. Here, we illustrate a general, system- and approximation-independent, approach to improve the accuracy of quantum dynamics approximations. The method is based on a Bayesian machine learning (BML) algorithm that is trained by a small number of exact results and a large number of approximate calculations, resulting in ML models that can generalize exact quantum results to different dynamical processes. Thus, a ML model trained by a combination of approximate and rigorous results for a certain inelastic transition can make accurate predictions for different transitions without rigorous calculations. This opens the possibility of improving the accuracy of approximate calculations for quantum transitions that are out of reach of exact scattering theory.

Disciplines

Quantum Physics | Theory and Algorithms

File Format

pdf

File Size

381 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS