Files

Download

Download Full Text (706 KB)

Description

Hydrogels are materials made up of three-dimensional, crosslinked networks composed of hydrophilic polymer chains that are serviceable due to their ability to absorb and retain a significant amount of water. The rate of water absorption can be determined by testing the hydrogels’ permeability to improve the absorption efficiency. This study aims to determine the water permeability of hydrogels of varying crosslinker ratios to facilitate fast water absorption. Here, an aluminum apparatus was designed and manufactured to apply a pressure distribution to hydrogel samples using a water reservoir and pressure regulator. A LabView simulation was programed to utilize Darcy’s Law to compute water permeability over a time interval. We anticipate that permeability will decrease as crosslinker ratio increases due to the microstructure of the gel becoming denser. Additionally, we hypothesize that increasing the pressure distribution will compress the gel, also making it denser and decreasing the permeability. The findings will be implemented into an atmospheric water harvester to contend as a possible solution to water scarcity. They will also serve as a base for further research into altering water permeability of hydrogels using freeze/thaw cycles.

Publication Date

Fall 11-15-2021

Language

English

Keywords

Hydrogel; Water Permeability; Crosslinker Ratio; Water Absorption

File Format

pdf

File Size

5000 KB

Comments

Faculty Mentor: Jeremy Cho, Ph.D.

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/

Water Flow Through Hydrogels


Share

COinS