Files
Download Full Text (705 KB)
Description
Hydrogels are materials made up of three-dimensional, crosslinked networks composed of hydrophilic polymer chains that are serviceable due to their ability to absorb and retain a significant amount of water. The rate of water absorption can be determined by testing the hydrogels’ permeability to improve the absorption efficiency. This study aims to determine the water permeability of hydrogels of varying crosslinker ratios to facilitate fast water absorption. Here, an aluminum apparatus was designed and manufactured to apply a pressure distribution to hydrogel samples using a water reservoir and pressure regulator. A LabView simulation was programed to utilize Darcy’s Law to compute water permeability over a time interval. We anticipate that permeability will decrease as crosslinker ratio increases due to the microstructure of the gel becoming denser. Additionally, we hypothesize that increasing the pressure distribution will compress the gel, also making it denser and decreasing the permeability. The findings will be implemented into an atmospheric water harvester to contend as a possible solution to water scarcity. They will also serve as a base for further research into altering water permeability of hydrogels using freeze/thaw cycles.
Publication Date
Fall 11-15-2021
Language
English
Keywords
Hydrogel; Water Permeability; Crosslinker Ratio; Water Absorption
File Format
File Size
5000 KB
Recommended Citation
Navarro, Bianca; Cho, Jeremy Ph.D.; and Gao, Yiwei, "Water Flow Through Hydrogels" (2021). Undergraduate Research Symposium Posters. 63.
https://digitalscholarship.unlv.edu/durep_posters/63
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
COinS
Comments
Faculty Mentor: Jeremy Cho, Ph.D.