Document Type

Article

Publication Date

8-30-2021

Publication Title

Review of Scientific Instruments

Volume

92

Issue

8

First page number:

1

Last page number:

8

Abstract

An insulated-gate bipolar transistor (IGBT) pulse generator for repetitive transcranial magnetic stimulation used for in vivo laboratory experiments on small animals, such as mice, is reported. The pulse generator is based upon an IGBT that can switch 700 A of current for 1 ms and that has a DC breakdown voltage of 1200 V. The duration of the design’s output pulse is controlled by, and follows, an input trigger pulse. The voltage amplitude of the output pulses is determined by an external high-voltage power supply and the energy stored in a 330 µF capacitor bank. The approach enables the amplitude of the voltage applied across the coil, the length of time the voltage is applied, and the number of times the voltage pulses are applied all to be controlled and adjusted to facilitate a wide range of experimental options. This paper provides a detailed schematic of the design, design discussions, and some representative experimental results. Additionally, the reported design can be scaled to higher currents by using an IGBT with a higher current rating.

Controlled Subject

Magnetic brain stimulation; Animal experimentation

Disciplines

Electromagnetics and Photonics | Electronic Devices and Semiconductor Manufacturing | Neuroscience and Neurobiology

File Format

pdf

File Size

10249 KB

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS