Award Date
1-1-2003
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Computer Science
First Committee Member
Laxmi P. Gewali
Number of Pages
83
Abstract
We consider the problem of developing fast algorithms for computing short collision-free paths for aerial vehicles in the presence of obstacles and enemy radar installations. When aerial vehicles are deployed in such regions, it is critical to compute admissible paths having reduced exposure to threats. The generalized version of this problem is known to be NP-hard [4]. We consider simplified versions in two dimensions. One of the specific problems we address is to adjust a given k-legged trajectory to reduce exposure to threats. We also propose an algorithm to compute a k-legged risk-reduced path using a stage graph which runs in 0(m 2p) time where m is the number of vertices per turn region and p is the number of radar and obstacle polygon edges. In addition, we describe methods for obtaining multiple risk-reduced paths and node disjoint paths from the stage graph. We also discuss the implementation of the proposed algorithms.
Keywords
Planning; Presence; Regions; Risk; Trajectory
Controlled Subject
Computer science
File Format
File Size
3000.32 KB
Degree Grantor
University of Nevada, Las Vegas
Language
English
Permissions
If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.
Repository Citation
Sherwood, Michael Allan, "Trajectory planning in the presence of risk regions" (2003). UNLV Retrospective Theses & Dissertations. 1561.
http://dx.doi.org/10.25669/9y1c-03gl
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/