Award Date
1-1-2005
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Mechanical Engineering
First Committee Member
Brendan J. O'Toole
Number of Pages
76
Abstract
The air gun test is a possible way to study the transient shock environment that a projectile is anticipated to encounter in an actual field test. The air gun test simulates the real gun test in a controlled environment by firing the projectile into an energy absorbing material like aluminum honeycomb. This thesis presents the use of Lagrangian and Arbitrary Lagrangian and Eulerian method in simulating the gun launch dynamics of a generic artillery component subjected to launch simulation in an air gun test. The aluminum honeycomb absorbs the kinetic energy of a projectile by deforming plastically. There are many material models for simulating aluminum honeycomb material in LS-DYNA. The MAT_CRUSHABLE_FOAM and MAT_MODIFIED_CRUSHABLE_FOAM material models are used for simulating the aluminum honeycomb. Four strike face geometry for aluminum honeycomb mitigator is studied - flat, double wedge, single wedge, and pyramid shape. The critical factors such as yield strength of the honeycomb and mass of momentum exchange mass (MEM - secondary energy absorbing device), which affect the dynamic response of projectile are studied. The acceleration, velocity and displacement of the projectile are compared to experiment results.
Keywords
Analysis; Element; Finite; Gun; Launch; Projectile
Controlled Subject
Mechanical engineering
File Format
File Size
2426.88 KB
Degree Grantor
University of Nevada, Las Vegas
Language
English
Permissions
If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.
Repository Citation
Nakalswamy, Kumarswamy Karpanan, "Finite element analysis of a projectile during gun launch" (2005). UNLV Retrospective Theses & Dissertations. 1793.
http://dx.doi.org/10.25669/8ld9-mo3j
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
COinS