Award Date
1-1-2005
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Electrical Engineering
First Committee Member
Sahjendra N. Singh
Number of Pages
71
Abstract
In this thesis the problem of control of semi-active devices (MR damper, MR elastomer) for shock isolation systems are considered. Semi-active control systems combine the best features of both the passive and active control systems, offering the reliability of passive devices, yet maintaining the versatility and adaptability of fully active devices. First the question of stability and control of a two degree-of-freedom magnetorheological (MR) fluid damper shock isolation system is considered. It is shown that for any arbitrarily time varying input current, the system is absolutely stable. This explains the shock isolation capability of the MR damper system even with control laws clamped in an ad hock way to limit the control magnitude. Then a nonlinear inverse (feedback linearizing) control law and a nonlinear suboptimal control law based on the state-dependent Riccati equation (SDRE) method are designed for the shock isolation of the payload mass. For the inverse control law derivation, the inertial position of the payload is chosen as the controlled output variable. For the design via the SDRE method, constraint on the input current is introduced and a quadratic performance index is chosen for minimization. It is shown that in the closed-loop system the inverse and suboptimal control laws are effective in shock isolation of the payload mass; Secondly, the mathematical modeling and predictive control of a magnetorheological fluid damper system is considered. (Abstract shortened by UMI.).
Keywords
Active; Control; Isolation; Semi; Shock; Techniques
Controlled Subject
Electrical engineering
File Format
File Size
1617.92 KB
Degree Grantor
University of Nevada, Las Vegas
Language
English
Permissions
If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.
Repository Citation
Maganti, Ganesh B, "Semi-active control techniques for shock isolation" (2005). UNLV Retrospective Theses & Dissertations. 1842.
http://dx.doi.org/10.25669/n993-h366
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
COinS