Award Date
1-1-2006
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Mechanical Engineering
First Committee Member
Ajit K. Roy
Number of Pages
96
Abstract
Austenitic Alloy C-22 has been tested for evaluation of its tensile and corrosion properties under conditions relevant to the nuclear hydrogen generation process known as the sulfur-iodine cycle. The results of tensile testing indicate that this alloy may be capable of maintaining metallurgical stability and enhanced ductility at temperatures up to 600°C. The stress-corrosion-cracking data suggest that this alloy may not undergo cracking in an acidic solution at 90°C at constant-load, the true failure stress (of) was significantly reduced under a slow-strain-rate condition using both smooth and notched specimens. The magnitude of the critical potentials determined by a polarization technique became more active with increase in temperature. The application of anodic control potential resulted in enhanced cracking tendency of Alloy C-22 showing reduced ductility, failure time and sigmaf. The corrosion rate in a similar environment at 150°C was enhanced at longer test duration showing a nonlinear weight loss versus time relationship. The fractographic evaluations of the broken specimen by scanning electron microscopy revealed dimpled microstructure indicating a ductile failure.
Keywords
Alloy; Application; Behavior Corrosion; High; Metallurgical; Temperature
Controlled Subject
Mechanical engineering; Materials science; Materials science
File Format
File Size
4024.32 KB
Degree Grantor
University of Nevada, Las Vegas
Language
English
Permissions
If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.
Repository Citation
Karamcheti, Raghunandan A, "Corrosion and metallurgical behavior of alloy C-22 for high-temperature applications" (2006). UNLV Retrospective Theses & Dissertations. 2003.
http://dx.doi.org/10.25669/g1b0-6s4v
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
COinS