Award Date

1-1-2007

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Science

First Committee Member

Yoohwan Kim

Number of Pages

87

Abstract

Cryptographers need to provide the world with a new encryption standard. DES, the major encryption algorithm for the past fifteen years, is nearing the end of its useful life. Its 56-bit key size is vulnerable to a brute-force attack on powerful microprocessors and recent advances in linear cryptanalysis and differential cryptanalysis indicate that DES is vulnerable to other attacks as well. A more recent attack called XSL, proposes a new attack against AES and Serpent. The attack depends much more critically on the complexity of the nonlinear components than on the number of rounds. Ciphers with small S-boxes and simple structures are particularly vulnerable. Serpent has small S-boxes and a simple structure. AES has larger S-boxes, but a very simple algebraic description. If the attack is proven to be correct, cryptographers predict it to break AES with a 2; 80 complexity, over the coming years; Many of the other unbroken algorithms---Khufu, REDOC II, and IDEA---are protected by patents. RC2 is broken. The U.S. government has declassified the Skipjack algorithm in the Clipper and Capstone chips.

Keywords

Algorithm; Analysis; Applications; Cryptography; Design; Dynamic; Implementation

Controlled Subject

Computer science

File Format

pdf

File Size

2211.84 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/


Share

COinS