Award Date

1-1-2007

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical and Computer Engineering

First Committee Member

Sahjendra N. Singh

Number of Pages

102

Abstract

This thesis considers the design of nonlinear and adaptive control systems for the control of submersibles as well as aircraft. In the first part of the thesis, control of submersibles using bow and stern hydroplanes is considered, and (i) a robust output feedback nonlinear control law using modeling error compensation, (ii) a nonlinear adaptive state feedback law using SDU decomposition; and (iii) an output feedback linear adaptive law for the dive-plane maneuvering are derived. The robust nonlinear controller with high-gain observer is designed for depth and pitch angle tracking along constant trajectories in the presence of parametric uncertainties and disturbances due to the sea waves. Next, the adaptive backstopping controller is developed to accomplish depth and pitch angle tracKing SDU decomposition of the high-frequency gain matrix is done to prevent singularity in the control law. For this design, one needs to know the sign of the two minors of the input matrix, but no other knowledge of the submarine parameters is required. Finally, a Model Reference Adaptive Control (MRAC) law using output feedback is derived for the linear model of the submersible; In the second part of the thesis (i) an adaptive Variable Structure flight Control (VSC) system and (ii) an adaptive flight control system for the roll-coupled maneuvers of aircraft using the aileron, rudder and elevator inputs are derived. Again, the SDU decomposition of the high frequency gain matrix is used for the derivation of singularity free control laws. Simulations performed for the underwater and the air vehicles using Matlab and Simulink show that in the closed-loop system, desired trajectory tracking is accomplished using each of the control systems.

Keywords

Adaptive; Air; Control; Nonlinear; System; Underwater; Vehicle

Controlled Subject

Electrical engineering

File Format

pdf

File Size

2252.8 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/


COinS