Award Date
1-1-2000
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Hotel Administration
First Committee Member
Bernard Fried
Number of Pages
173
Abstract
This study shows the development of a discriminant model to predict failure or non-failure in the casino industry. The objective of the study is to provide a model developed for the casino industry using financial data from a sample of failed and nonfailed casinos. The data was provided by the Nevada Gaming Control Board from information they collect from all licensed casinos with over {dollar}1 million in annual revenue; The theoretical model developed for the study includes five constructs that indicate success or failure in the casino business. The five constructs are: Management, Location, Ambiance, Marketing and Financial Strength. Due to limitations in the data, two of these constructs were not included in the development of the discriminant model; Location and Ambiance; The model includes twelve predictor variables: A&P/Total Revenues, Cash Flow/Liabilities, Net Income/Assets, Sales/Assets, Operating Margin, Payroll/Revenues, Payroll/Assets, % Change in A&P/Total Revenues, % Change in Cash/Liabilities, Change in Sales/Assets, % Change in Operating Margin, % Change in Payroll/Revenue and % Change in Payroll/Assets; The model accurately predicted group membership for 100% of the cases included in the study. The model was shown to be statistically valid using a Wilks' Lambda test. The model was also tested using data that were not included in the development of the model. The classification accuracy of this data set was 100% for failed firms and 89% for the nonfailed firms, with an overall classification accuracy of 92.3%; The model predicted failure more accurately than three traditional models using casino data had done in a previous study. The three models were the Altman Z score model, which had a prediction accuracy rate of 50% one year prior to failure, the Deakin model, which had a prediction accuracy rate of 29% one year prior to failure and the Zavgren model, which had an accuracy prediction rate of 21% one year prior to failure; The study shows that a financial analysis model that is developed specifically for the casino industry provides much more accurate information to its users.
Keywords
Bankruptcy; Casino; Casino Industry; Industry; Model; Prediction
Controlled Subject
Accounting
File Format
File Size
3440.64 KB
Degree Grantor
University of Nevada, Las Vegas
Language
English
Permissions
If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.
Repository Citation
Patterson, David William, "Bankruptcy prediction: A model for the casino industry" (2000). UNLV Retrospective Theses & Dissertations. 2457.
http://dx.doi.org/10.25669/ul1e-ec1n
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
COinS