Award Date

1-1-2007

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering

First Committee Member

Shahram Latifi

Number of Pages

134

Abstract

The star interconnection network has been known as an attractive alternative to n-cube for interconnecting a large number of processors. It possesses many nice properties, such as vertex/edge symmetry, recursiveness, sublogarithmic degree and diameter, and maximal fault tolerance, which are all desirable when building an interconnection topology for a parallel and distributed system. Investigation of the robustness of the star network architecture is essential since the star network has the potential of use in critical applications. In this study, three different reliability measures are proposed to investigate the robustness of the star network. First, a constrained two-terminal reliability measure referred to as Distance Reliability (DR) between the source node u and the destination node I with the shortest distance, in an n-dimensional star network, Sn, is introduced to assess the robustness of the star network. A combinatorial analysis on DR especially for u having a single cycle is performed under different failure models (node, link, combined node/link failure). Lower bounds on the special case of the DR: antipode reliability, are derived, compared with n-cube, and shown to be more fault-tolerant than n-cube. The degradation of a container in a Sn having at least one operational optimal path between u and I is also examined to measure the system effectiveness in the presence of failures under different failure models. The values of MTTF to each transition state are calculated and compared with similar size containers in n-cube. Meanwhile, an upper bound under the probability fault model and an approximation under the fixed partitioning approach on the ( n-1)-star reliability are derived, and proved to be similarly accurate and close to the simulations results. Conservative comparisons between similar size star networks and n-cubes show that the star network is more robust than n-cube in terms of ( n-1)-network reliability.

Keywords

Distance Reliability; Graph; Investigation; Network Robustness; Networks; Robustness; Star; Star Graph Networks

Controlled Subject

Electrical engineering

File Format

pdf

File Size

3061.76 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Identifier

https://doi.org/10.25669/jm9c-w936


Share

COinS