Award Date
5-1-2017
Degree Type
Thesis
Degree Name
Master of Arts (MA)
Department
Psychology
First Committee Member
Daniel Allen
Second Committee Member
Bradley Donohue
Third Committee Member
Murray Millar
Fourth Committee Member
Jennifer Keene
Number of Pages
60
Abstract
The Comprehensive Trail-Making Test (CTMT) is a commonly used assessment tool shown to be sensitive to brain dysfunction. Research has found cognitive abilities such as possessing speed, working memory, motor speed, sustained attention, and cognitive flexibility influence performance on the CTMT in non-clinical populations.
However, little research has been done to examine the neurocognitive abilities that influence performance on the CTMT in clinical populations. Research has demonstrated that the factor structure of the CTMT differs between clinical and non-clinical groups, which supports the need for further validation of the CTMT in clinical populations. This study examines the neurocognitive correlates that are thought to underlie performance on factor scores of the CTMT in children that with brain dysfunction. The sample for the current study consisted of 98 children, with various sustained and developmental and neurological disorders and a subgroup of children with a TBI (n = 71) selected from the overall sample. These children completed a neuropsychological battery, which included the CTMT and measures of possessing speed, working memory, motor speed, and sustained attention. The relationship between the neurocognitive correlates and the CTMT factor scores were examined using a regression analysis. It was hypothesized that the simple sequencing factor would be predicted by tests that assess Processing Speed,Sustained Attention and Motor Function, while the complex sequencing factor would be predicted by Processing speed and Working Memory. Results indicate that Processing Speed and Motor Function were significant predictors for both the Simple and Complex Sequencing factors. In addition to Processing Speed and Motor Function, Working Memory was a significant predictor for Complex Sequencing for the overall sample. In contrast, Sustained Attention, along with Processing Speed and Motor Function, significantly predicted Complex Sequencing for the TBI subgroup. These findings provide evidence for the use of the CTMT in clinical population, and clarify the underlying mechanisms measured by the CTMT.
Keywords
Executive Functions; Neuropsychology; Traumatic Brain Injury
Disciplines
Psychology
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Mayfield, Abigail Rose, "Neurocognitive Correlates of the Comprehensive Trail Making Test (CTMT) in Brain Injured Children" (2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3010.
http://dx.doi.org/10.34917/10986050
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/