Award Date
August 2017
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Physics and Astronomy
First Committee Member
Daniel Proga
Second Committee Member
Bing Zhang
Third Committee Member
Stephen Lepp
Fourth Committee Member
Darrell Pepper
Number of Pages
160
Abstract
Active galactic nuclei (AGN) are among the most luminous objects in the universe and are known to be powered by accretion onto supermassive black holes in the centers of galaxies. AGN clouds are prominent components of successful models that attempt to unify the diversity of AGN. These clouds are often hypothesized to be the source of the broad and narrow line emission features seen in AGN spectra. Moreover, the high column densities of gas needed to account for broad absorption lines has been attributed to the same population of clouds, while the motion of AGN clouds has been invoked to explain the spectral variability observed in both broad absorption lines and warm absorbers.
Despite the importance of AGN clouds for explaining phenomena associated with AGN, we still lack a comprehensive understanding of the origin, dynamics, lifetime, and properties of these clouds. This thesis is an attempt to lay the groundwork for such a comprehensive model. After summarizing the known physics of AGN clouds and our modeling framework (i.e. the equations of hydrodynamics), we review the linear theory of the thermal instability (TI), which provides a natural mechanism to form clouds. We then extend this theory of cloud formation to account for the role of cloud acceleration, which must accompany the nonlinear regime of TI. After presenting hydrodynamical simulations that demonstrate how cloud formation and acceleration are intertwined processes, we explore how the efficiency of cloud acceleration is affected by the inclusion of flux variability. We find that the acceleration can more than double when the period of flux oscillations is longer than the thermal timescale of the gas. Next we calculate synthetic absorption line profiles to determine how clouds evolving along the line of sight would appear to a distant observer. We identify a spectral signature for cloud acceleration in the case of absorption line doublets. Finally, we show how global hydrodynamical simulations can be used to make predictions for the observables obtainable from reverberation mapping campaigns. We conclude with a summary of our findings and the next steps needed to further develop a comprehensive model of AGN clouds.
Keywords
Active galaxies; Hydrodynamics; Instabilities; Numerical methods; Photoionization; Radiative transfer
Disciplines
Astrophysics and Astronomy | Physics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Waters, Timothy, "The Formation and Dynamics of Clouds in the Environment of Active Galactic Nuclei" (2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3106.
http://dx.doi.org/10.34917/11156831
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/