Award Date
12-1-2017
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Chemistry and Biochemistry
First Committee Member
Clemens Heske
Second Committee Member
Dong-Chan Lee
Third Committee Member
Kathleen Robins
Fourth Committee Member
Daniel Gerrity
Number of Pages
121
Abstract
Solution-processed materials are appealing for use in printable electronics as a means to lower production costs, but precise control of the process is crucial for achieving the desired properties in the final materials and their interfaces. Electronic interface properties depend on both the involved materials and their fabrication processes, impacting the development and commercialization of these materials. Analyzing the chemical and electronic structure of these materials, particularly at the surfaces and interfaces, is important not only for insuring that the materials have the desired properties, but also for understanding the effects of the fabrication process and how to modify properties via processing for specific applications. To gain such insights into the chemical and electronic properties at the surface, photoelectron spectroscopy and inverse photoemission spectroscopy have proven to be powerful techniques.
In the first part of this research, indium-based transparent conductive oxides (TCOs) were prepared by spin-coating precursor solutions of metal-acetylacetonate coordination complexes onto glass substrates. The precursor films were converted into TCO films by annealing in ambient air or in dry nitrogen. These were characterized with X-ray Photoelectron Spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy (UPS), and Inverse Photoemission Spectroscopy (IPES). The observed surface chemistries and electronic structures are reported, and the effects of ambient environment, low-energy (50 eV) ion treatments, and heating in ultra-high vacuum (UHV) will be discussed.
The second part of this dissertation explores the surfaces of, and the interface between, two materials widely used in printable organic electronics: indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Spin coating was used to fabricate thin films of both ITO and PEDOT:PSS, which were then characterized using XPS, UPS, and IPES. Inhomogeneities in the PEDOT:PSS films involving differing ratios of PEDOT to PSS were observed using XPS, and the work function at different points on individual samples was measured. The impact of these findings on the surface electronic properties and the implications for printable electronic devices will be discussed.
Keywords
conductive polymer; metal oxides; organic electronics; printable electronics; solution-processed materials; thin films
Disciplines
Chemistry | Engineering Science and Materials | Materials Science and Engineering | Physical Chemistry
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Kogler, Lynette M., "Surface and Interface Characterization of Solution-Processed Metal Oxides and PEDOT:PSS Using Photoelectron Spectroscopy" (2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3143.
http://dx.doi.org/10.34917/11889712
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Included in
Engineering Science and Materials Commons, Materials Science and Engineering Commons, Physical Chemistry Commons