Award Date
December 2018
Degree Type
Thesis
Degree Name
Master of Science in Computer Science
Department
Computer Science
First Committee Member
Wolfgang Bein
Second Committee Member
Ajay Datta
Third Committee Member
Justin Zhan
Fourth Committee Member
Pradip Bhowmik
Number of Pages
55
Abstract
Researchers have developed efficient techniques, meta-heuristics to solve many Combinatorial Optimization (CO) problems, e.g., Flow shop Scheduling Problem, Travelling Salesman Problem (TSP) since the early 60s of the last century. Ant Colony Optimization (ACO) and its variants were introduced by Dorigo et al. [DBS06] in the early 1990s which is a technique to solve CO problems. In this thesis, we used the ACO technique to find solutions to the classic Flow shop Scheduling Problem and proposed a novel method for solution improvement. Our solution is composed of two phases; in the first phase, we solved TSP using ACO technique which gave us an initial permutation or tour. We used the same trip as an initial solution for our problem and then improved it by using 2-opt exchanges which yielded in a promising result. Furthermore, we introduced another improvement technique which gave us a more promising result. We have compared our results with the best (optimal) and worst solution known till date. A comprehensive experimental study using existing dataset proves that our approach remarkably gives good results.
Keywords
2-opt; ant colony optimization; makespan minimizing; metaheuristic; permutation flow-shop scheduling; travelling salesman analogy
Disciplines
Computer Sciences
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Chowdhury, Tasmin, "Combinatorial Ant Optimization and the Flowshop Problem" (2018). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3480.
http://dx.doi.org/10.34917/14279590
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/