Award Date
5-1-2019
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Mathematical Sciences
First Committee Member
Monika Neda
Second Committee Member
Zhonghai Ding
Third Committee Member
Xin Li
Fourth Committee Member
Dong-Chan Lee
Number of Pages
60
Abstract
The Navier-Stokes equations (NSE) are an essential set of partial differential equations for governing the motion of fluids. In this paper, we will study the NSE for an incompressible flow, one which density ρ = ρ0 is constant.
First, we will present the derivation of the NSE and discuss solutions and boundary conditions for the equations. We will then discuss the Reynolds number, a dimensionless number that is important in the observations of fluid flow patterns. We will study the NSE at various Reynolds numbers, and use the Reynolds number to write the NSE in a nondimensional form.
We will then derive energy and enstrophy balances for the NSE. At high Reynolds numbers, a fluid’s velocity u has many small spatial scales, which become difficult to account for, especially in three-dimensional flow. We discuss the time relaxation model (TRM), which aims to truncate these small scales while allowing the large scales to be accurately resolved, [25]. We will derive the energy and enstrophy balances for the TRM and show that the energy and enstrophy are the same as the NSE, but with enhanced dissipation terms.
Finally, we will derive a continuous finite element variational formulation for the TRM. Using FreeFEM++, we will run numerical results for the TRM for a specific benchmark problem.
Keywords
Finite element method; Navier-Stokes equations; Numerical analysis; Reynolds number; Scientific computing; Taylor-Green vortex
Disciplines
Aerodynamics and Fluid Mechanics | Applied Mathematics | Mathematics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Hill, Tahj, "Numerical Analysis and Fluid Flow Modeling of Incompressible Navier-Stokes Equations" (2019). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3611.
http://dx.doi.org/10.34917/15778447
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Included in
Aerodynamics and Fluid Mechanics Commons, Applied Mathematics Commons, Mathematics Commons