Award Date
May 2023
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical Engineering
First Committee Member
Yi-Tung Chen
Second Committee Member
Jeremy Cho
Third Committee Member
Mohamed Trabia
Fourth Committee Member
Hui Zhao
Fifth Committee Member
Stephen Lepp
Number of Pages
116
Abstract
The scope of this thesis is to numerically investigate condensation that occurs in transonic and supersonic flows. Condensation shocks are a phenomenon that occurs within converging-diverging nozzles. There are many applications forconverging-diverging nozzles, such as thermovapour compressors (TVC), which are largely used for desalination. As water resources become more precious within the western United States there is a need to develop cost effective solutions for cleaning water. Steam generator power stations are another application where enhanced simulations and accuracy of design could improve efficiency and save on carbon emissions. Traditionally, numerical designs of transonic flows have been conducted with either an ideal gas equation of state (EoS), which ignores condensation, or a homogeneous equilibrium approach, which assumes the fluid to be in thermo-dynamic equilibrium. The classical theory of nucleation was developed through the kinetic theory of gases to explain the process of condensation in supersonic flows, which occurs in a metastable state. The theory has recently been implemented in commercial codes and enjoys some success, particularly in low pressure flows. Improvement of the theory of classical nucleation in both high pressure and low pressure flows can help to improve the design of a multitude of systems. Through a self developed code that simulates one-dimensional transonic vapour flow through a converging-diverging nozzle, a new isothermal correction was developed. This new isothermal correction brings greater accuracy to simulations of homogeneously condensing high pressure flows and proved to be more accurate than the present theory in some lower pressure simulations.
Keywords
nozzle; phase change; transonic flow
Disciplines
Aerodynamics and Fluid Mechanics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Vallet, David, "Simulating Condensation in the Theory of Classical Nucleation" (2023). UNLV Theses, Dissertations, Professional Papers, and Capstones. 4797.
http://dx.doi.org/10.34917/36114822
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/