Award Date
December 2023
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Computer Science
First Committee Member
Shaikh Arifuzzaman
Second Committee Member
Laxmi Gewali
Third Committee Member
Wolfgang Bein
Fourth Committee Member
Cy Chan
Fifth Committee Member
Brian Labus
Number of Pages
140
Abstract
Discovering motifs or structural patterns, such as communities, is a significant graph application utilized for classifying groups in social and business networks, identifying similar proteins, detecting anomalous behavior in the cybersecurity domain, and finding critical entities in rumor propagation or infectious disease spreading. Existing state-of-the-art techniques for community discovery face challenges related to scalability, performance limitations, and methodological inaccuracies. The objective of this doctoral dissertation is to introduce novel parallel algorithms and propose high-performance computing architecture designs to address the performance constraints of current community detection approaches when processing large-scale social and biological data. This research focuses on two main categories of community discovery problems: i) global community discovery and ii) local community discovery. We identify two notable sequential approaches, one from each category, and develop and implement parallel algorithm solutions for both. Our parallel algorithm design for global community discovery achieves a substantial speedup of up to 25x compared to the original sequential approach, leveraging hybrid memory parallelism. Furthermore, we conduct comprehensive benchmarking and performance analysis of software hash accumulation on two prominent community discovery approaches. Based on our findings, we propose a generalized accelerator design for hash accumulation and simulate the proposed architecture, achieving up to a 5.6x speedup. For the local/goal-oriented community discovery approach, we design an innovative parallel algorithm based on shared memory parallelism, demonstrating a remarkable speedup ranging from 20x to 55x for massive graphs with millions of vertices and billions of edges.
Keywords
Accelerated Hash Accumulation; Community Discovery; Graph Algorithms; High-Performance Computing; Parallel Algorithms; Performance Optimization
Disciplines
Computer Sciences
File Format
File Size
2090 KB
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Faysal, Md Abdul Motaleb, "Scalable Algorithm Design and Performance Analysis for Graph Motifs Discovery" (2023). UNLV Theses, Dissertations, Professional Papers, and Capstones. 4877.
http://dx.doi.org/10.34917/37200503
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/