Award Date
5-2011
Degree Type
Dissertation
Degree Name
Doctor of Philosophy in Chemistry
First Committee Member
Dong-Chan Lee, Chair
Second Committee Member
Clemens Heske
Third Committee Member
Kathleen Robins
Graduate Faculty Representative
Michael Pravica
Number of Pages
157
Abstract
Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for successful molecular assembly, most of the reported examples are for electron-donating (p-type) organic semiconductors, with only a limited number characterized as electron-accepting (n-type). Consequently, developing useful n-type organic semiconductors with a self-assembling ability is of critical importance.
The objective of this research is to create a new n-type organic semiconductor which can self-assemble into one-dimensional nanostructures. A series of T-shaped asymmetric bisphenazine derivatives containing different functional groups were designed and synthesized in order to investigate the effect of the position, type, and number of substituents on electronic and assembling properties. Furthermore, phenazine and bisphenazine substituted with four chlorines for increasing electron density at one end and alkyl side groups for increasing solubility at the other end were also synthesized. The final compounds were fully characterized with 1H NMR, 13C NMR, and mass spectrometry. The electronic properties were studied by UV-visible absorption and emission spectroscopy, and cyclic voltammetry. The experimental values for the electronic properties of these systems are compared with theoretical calculations. The assembling properties were also extensively investigated by polarized optical microscopy, scanning electron microscopy, atomic force microscopy, single crystal X-ray crystallography, and X-ray diffraction.
Keywords
Bisphenazine; Electronic property; N-type; Organic semiconductors; Phenazine; Self-assembly; Self-organizing systems; Synthesis
Disciplines
Chemical Engineering | Chemistry | Electronic Devices and Semiconductor Manufacturing | Nanoscience and Nanotechnology | Organic Chemistry | Physical Chemistry
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Jang, Kyoungmi, "Self-assembling organic semiconductors with tunable electronic properties based on novel asymmetric phenazine and bisphenazine" (2011). UNLV Theses, Dissertations, Professional Papers, and Capstones. 970.
http://dx.doi.org/10.34917/2308508
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Included in
Chemical Engineering Commons, Electronic Devices and Semiconductor Manufacturing Commons, Nanoscience and Nanotechnology Commons, Organic Chemistry Commons, Physical Chemistry Commons